ACOUSTIC AUDIT - IMMISSION REPORT

Unifor Wind Turbine
Port Elgin, Ontario

Prepared for:
Union Building Corporation of Canada
205 Placer Ct.
North York, ON
M2H 3H9

Prepared by
Nathan Gara, C.E.T.

and

Ian R. Bonsma, PEng

January 8, 2018
## VERSION CONTROL

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Version Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>December 15, 2017</td>
<td>Original Report</td>
</tr>
<tr>
<td>2</td>
<td>January 8, 2018</td>
<td>Typographical Corrections Made to Table 4a</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

Howe Gastmeier Chapnik Limited (“HGC Engineering”) was retained by Union Building Corporation of Canada to complete an acoustic immission audit of the Unifor Wind Turbine (“Wind Project”). The Wind Project includes one Enercon wind turbine generator, rated at 500 kW. The audit was completed to abide with a previous commitment made by Unifor (formerly CAW) to conduct noise testing. HGC Engineering has assessed the acoustic impact against the acoustic criteria of the Ministry of the Environment and Climate Change (“MOECC”) in accordance with the requirements of the MOECC’s 2017 Compliance Protocol for Wind Turbine Noise – Guidelines for Acoustic Assessment and Measurement (“Compliance Protocol”).

This immission audit was completed between September 21 and November 7, 2017. The sound level measurements and analysis, as performed in accordance with the MOECC’s Compliance Protocol, indicate that the Wind Project is operating in excess of the applicable sound level criteria at monitoring location M1. Details of the measurements and analysis are provided herein.
# TABLE OF CONTENTS

EXECUTIVE SUMMARY .............................................................................................................. iii  
1 Introduction ................................................................................................................................ 1  
2 Monitoring Locations ............................................................................................................... 1  
3 Instrumentation ....................................................................................................................... 3  
4 Assessment Criteria .................................................................................................................. 4  
5 Methodology ............................................................................................................................. 5  
6 Tonality Assessment ................................................................................................................. 7  
7 Measurements and Results ...................................................................................................... 7  
8 Conclusions .............................................................................................................................. 8  
References ...................................................................................................................................... 9

Figure 1: Wind Turbine and Sound Level Monitor Locations  
Figure 2: Wind Roses for Monitoring Location M1  
Figures 3a and 3b: Immission Results for Monitoring Location M1

APPENDIX A – Monitoring Location Selection  
APPENDIX B – Monitoring Location Photos  
APPENDIX C – Instrumentation Calibration Certificates  
APPENDIX D – Statement of Operation
1 INTRODUCTION

Howe Gastmeier Chapnik Limited (“HGC Engineering”) was retained by Union Building Corporation of Canada to complete an Acoustic Audit – Immission of the Unifor Wind Turbine (“Wind Project”). The Wind Project is located at the Unifor Family Education Center in the Town of Port Elgin, Ontario and consists of one Enercon E-48 wind turbine generator, designated turbine T1. Turbine T1 is rated at 500 kW and has a hub height of 76 m.

The audit was completed to abide with a previous commitment made by Unifor (formerly CAW) to conduct noise testing.

2 MONITORING LOCATIONS


A number of locations were considered for use as sound level monitoring locations for the audit, as shown in Table A1 of Appendix A. Predicted sound levels for the receptors surrounding the Wind Project were taken from the ENIR.

The receptors were selected based on their predicted sound level and consultation with the land owners. The annual wind rose for the area is provided in Figure A1 of Appendix A. Photos of the selected receptor locations can be found in Appendix B.

HGC Engineering developed an acoustic predictive model of the site to determine the sound levels at the selected monitoring locations. The predicted sound levels at the monitoring and receptor locations, along with UTM coordinates can be found in Table 1.
Table 1: Predicted Sound Levels and UTM Coordinates of Selected Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Easting</th>
<th>Northing</th>
<th>Predicted Sound Level [dBA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>J Receptor</td>
<td>467256</td>
<td>4919594</td>
<td>42.7±</td>
</tr>
<tr>
<td>Monitoring Location M1</td>
<td>467348</td>
<td>4919607</td>
<td>43.9*</td>
</tr>
<tr>
<td>T Receptor</td>
<td>467416</td>
<td>4919124</td>
<td>40.1±</td>
</tr>
<tr>
<td>Monitoring Location M2</td>
<td>467474</td>
<td>4919119</td>
<td>39.2*</td>
</tr>
<tr>
<td>Q Receptor</td>
<td>467169</td>
<td>4919269</td>
<td>42.0*</td>
</tr>
<tr>
<td>Monitoring Location M3</td>
<td>467212</td>
<td>4919266</td>
<td>44.1*</td>
</tr>
</tbody>
</table>

± Sound level taken from ENIR [1].
* Sound level predicted by acoustic model created by HGC Engineering.

Receptor location J is a single storey cottage located at 12 Globe Place. Turbine T1 is approximately 210 m to the southeast. The sound level meter was installed on a fence at the northwest side of the Unifor property, approximately 205 m from T1, designated Monitoring Location M1. The microphone was placed at a height of 4.5 m, consistent with the ENIR.

Receptor location T is a two storey home located at 77 CAW Road (Bruce County Road 25). Turbine T1 is approximately 290 m to the north. The sound level meter was installed in an agricultural field to the west of the property, approximately 315 m from turbine T1, designated Monitoring Location M2. The microphone was placed at a height of 4.5 m, consistent with the ENIR.

Receptor location Q is a two storey home located at 107 CAW Road (Bruce County Road 25). The turbine, T1 is approximately 230 m to the northeast. The sound level meter was installed in an agricultural field to the west of the property, approximately 205 m from turbine T1, designated Monitoring Location M3. The microphone was placed at a height of 4.5 m, consistent with the ENIR.

The Wind Project area is generally residential in nature. Locations M2 and M3 were located next to a frequently travelled road. Location M1 was located next to a baseball diamond.
3 INSTRUMENTATION


Audio frequency sound levels were measured using Svantek 977 sound level meters, each connected to \( \frac{1}{2} \)” microphones. The microphones were set at a height of approximately 4.5 m and equipped with 175 mm diameter windscreens to minimize wind-induced microphone self-noise.

The energy-equivalent average sound level, denoted \( L_{EQ} \) was recorded by the instrumentation. The audio-frequency measurements are presented as A-weighted sound levels as they are intended to represent the loudness of sounds as perceived by the human ear. The overall audio-frequency sound level monitoring results are summarized in this report.

In addition to the acoustic instrumentation, meteorological instruments were used. A Davis weather station was deployed at Monitoring Location M1 to collect ground weather conditions including temperature, humidity, and precipitation. NRG anemometers and wind vanes were used at each receptor location to collect 10 m height wind speed and direction.

The various instruments deployed by HGC Engineering are summarized in Table 2, and their respective locations are shown in Figure 1.
Table 2: Measurement Instrumentation

<table>
<thead>
<tr>
<th>Location</th>
<th>Instrumentation Make and Model</th>
<th>Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Svantek 977 sound level meter</td>
<td>36439</td>
</tr>
<tr>
<td></td>
<td>NRG #40C anemometer connected to a Campbell Scientific datalogger</td>
<td>179500262926</td>
</tr>
<tr>
<td>M2</td>
<td>Svantek 977 sound level meter</td>
<td>36426</td>
</tr>
<tr>
<td></td>
<td>NRG #40C anemometer connected to a Campbell Scientific datalogger</td>
<td>179500262946</td>
</tr>
<tr>
<td>M3</td>
<td>Svantek 977 sound level meter</td>
<td>36428</td>
</tr>
<tr>
<td></td>
<td>NRG #40C anemometer connected to a Campbell Scientific datalogger</td>
<td>179500265230</td>
</tr>
</tbody>
</table>

The sound level meters were configured to measure and record spectral (frequency-dependent) one-minute $L_{EQ}$ sound level measurements. For identification of dominant sources, the sound level meters also recorded audio files.

Correct calibration of the acoustic instrumentation was verified using an acoustic calibrator manufactured by Brüel & Kjær (B&K). Calibration verification was carried out on a bi-weekly basis throughout the measurement period.

Windscreens were used on the microphones, consistent with the requirements of MOECC technical publication NPC-103, Procedures [3]. A large wind screen, 175 mm in diameter, was used on each sound level meter to minimize wind-induced microphone self-noise at higher wind speeds. Sound level data included herein has not been adjusted for the sound insertion loss of the large wind screen.

All the equipment was within its annual or bi-annual calibration, and the calibration certificates can be found in Appendix C.

4 ASSESSMENT CRITERIA

The MOECC publication Noise Guidelines for Wind Farms – Interpretation for Applying MOE NPC Publications to Wind Power Generation Facilities [4] indicates the applicable sound level limit for wind energy projects in a Class 2 environment. Additionally, the Compliance Protocol includes the same sound level limits which are shown in Table 3.
### Table 3: Wind Turbine Noise Criteria [dBA]

<table>
<thead>
<tr>
<th>Wind Turbine Sound Level Limits Class 2 Area [dBA]</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 m Height Wind Speed [m/s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>45.0</td>
<td>45.0</td>
<td>45.0</td>
<td>45.0</td>
<td>45.0</td>
<td>49.0</td>
<td>51.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It should be noted that the sound level limits of the MOECC apply only to the sound level contribution of the sound source under assessment, in this case the sound from the wind turbine generators. Thus, where a sound level measured at a receptor location includes significant sound due to the relevant sound source and unrelated background sound sources (i.e., road vehicles, trains, air traffic, farming machinery, wind, etc.), some form of evaluation must be made to determine the sound level contribution of the source under assessment in the absence of the background sounds. Methodology prescribed by the MOECC to complete an assessment of a wind energy project is discussed in the following section.

## 5 METHODOLOGY

The MOECC requested the acoustic audit be completed in accordance with Part D of the Compliance Protocol. Part D includes requirements for instrumentation, measurement, and data reduction procedures to assist with determining compliance.

A series of one-minute energy-equivalent sound level measurements are collected with (“ON”) and without (“OFF”) the turbines operating. Simultaneously, wind speed and direction at 10 m height are measured and collected in one-minute intervals. The measured sound level data is separated into integer wind speed “bins” where the sound levels corresponding to each integer wind speed are logarithmically averaged to determine the average sound level when the wind turbines are operational and when they are parked. The ambient $L_{EQ}$ (turbines parked) is logarithmically subtracted from the overall $L_{EQ}$ (turbines operational) to determine the sound level contribution of the wind turbines alone. Supplementary data including wind speed at turbine hub height, wind speed at noise measurement height, turbine electrical power output, turbine yaw position, temperature, humidity, and statistical noise indices (Ln) can also be measured during the monitoring campaign to aid in the analysis.
Part D of the Compliance Protocol requires at least 120 one-minute intervals be measured for each 10 m height wind speed between 4 and 7 m/s when the turbines are operating and at least 60 one-minute intervals be measured for each 10 m height wind speed between 4 and 7 m/s when the turbines are parked. Prior to determining the number of data points measured in each wind speed bin, the data is filtered to only include night-time hours (between 22:00 and 05:00) and data outside of rainfall (no rain within one hour of the measurement interval). Data is also filtered to only include periods where the closest turbine is operating at greater or equal to 85% of its rated electrical power output and at least 90% of its maximum sound power, and the turbine yaw position is +/-45 degrees from the line of sight between the closest turbine and the measurement location (measurement location is downwind).

If the measurement campaign does not yield sufficient data to satisfy the minimum requirements of Part D of the Compliance Protocol, a Revised Assessment Methodology Immission Audit (“RAM I-Audit”) can be completed. As described in Part E5.5 of the Compliance Protocol, three wind speed bins between 1 and 7 m/s or two wind speed bins between 1 and 4 m/s are required. With appropriate justification, the number of one-minute intervals required in each bin may be reduced to 60 for turbine operational measurements (ON) and 30 for ambient measurements (OFF). If there is insufficient ambient sound level data (OFF), a value of 30 dBA or data from a lower wind speed bin may be used to represent a wind speed bin.

The Compliance Protocol allows for the removal of individual events to improve the signal to noise ratio. A review of the audio recordings allows for the identification of the dominant noise source within a given one-minute interval, and the subsequent removal of data points that contain interference.

Adjustments to the measured sound levels may be required based on wind turbine tonality, if any. If during the acoustic measurement campaign the project wind turbines exhibit tonal characteristics (a whine, screech, buzz or hum) then an assessment of the tonal audibility is required according to the CAN/CSA publication Wind Turbine Generator Systems – Part 11: Acoustical Measurement Techniques [5]. The average tonal audibility correction must be determined for each integer wind speed and the correction added to the final noise contribution.
of the Wind Project at those wind speeds, in accordance with International Standards Organization 1996-2 [6].

6  **TONALITY ASSESSMENT**

Based on our site observations up close to the wind turbine generator there were no tones identified/observed at the turbine or the monitoring locations.

7  **MEASUREMENTS AND RESULTS**

Sound level measurements were conducted between September 21 and November 7, 2017. The weather during the monitoring period varied, including several days with rain. Temperatures ranged from -10 to 25°C. Wind speeds at 10 m height ranged from 0 m/s up to 15 m/s. The prevailing wind direction during the measurement campaign was from the southeast and northwest, inconsistent with the historical wind rose, which shows wind predominantly from the southwest. Figure 2 show the wind rose for the receptor location during the ON and OFF conditions.

The sound level summary for data collected at monitoring location M1 is shown in Tables 4a and 4b. Data were collected between September 21 and November 7, 2017.

### Table 4a: Monitoring Location M1 - Sound Level Summary

<table>
<thead>
<tr>
<th>LET Sound Level [dBA]</th>
<th>10 m Height Wind Speed [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Average Operating (ON) / Std Dev.</td>
<td>-1</td>
</tr>
<tr>
<td>Average Ambient (OFF) / Std Dev.</td>
<td>34.4</td>
</tr>
<tr>
<td>Wind Project Only</td>
<td>-</td>
</tr>
<tr>
<td>Criteria</td>
<td>45</td>
</tr>
<tr>
<td>Excess</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Less than 60 data points for Operating (ON) Condition
The measurement data and analysis indicate a sound level excess of 2 dBA at 3 and 4 m/s. Based on the data presented above and in Figures 3a and 3b, the Wind Project is not compliant with the MOECC sound level criteria at Monitoring Location M1.

Locations M2 and M3 were deployed between October 23 and November 7, 2017, however, insufficient data were collected and no results are available.

Appendix C includes a statement from Union Building Corporation of Canada indicating the wind turbine generator were operating normally from September 21 to November 7, 2017.

8 CONCLUSIONS

The measurements and analysis, performed in accordance with the methods prescribed by the Ontario Ministry of the Environment and Climate Change’s 2017 publication *Compliance Protocol for Wind Turbine Noise* indicates that the Wind Project is operating in excess of the MOECC’s sound level criteria at Monitoring Location M1. A noise abatement action plan may need to be developed by Unifor to bring the Wind Project into compliance with the sound level limits.
REFERENCES


Figure 1: Receptor Monitoring Locations
Unifor Wind Energy Project

Monitoring Location M3
Monitoring Location M1
Enercon E-48
Monitoring Location M2

FRAME COORDINATES ARE UTM IN METRES
Figure 2: Wind Direction - Unifor Wind Turbine
Monitoring Location M1, 10 m Height, Wind Speeds 0.5 to 7.5 m/s
ON and OFF Conditions, September 21 to November 7, 2017
Figure 3a: Unifor Wind Turbine, Immission Results
Monitoring Location M1, September 21 to November 7, 2017
Figure 3b: Unifor Wind Turbine, Immission Results
Monitoring Location M1, September 21 to November 7, 2017
APPENDIX A:
MONITORING LOCATION SELECTION
Figure A1: Annual Wind Rose [7]
Table A1: Potential Receptor Locations

<table>
<thead>
<tr>
<th>ID</th>
<th>Distance to Turbine T1 [m]</th>
<th>Predicted Sound Pressure Level [dBA] ¹</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>213</td>
<td>42.7</td>
<td>Selected Receptor</td>
</tr>
<tr>
<td>M1</td>
<td>194</td>
<td>43.9*</td>
<td>Monitoring Location</td>
</tr>
<tr>
<td>W</td>
<td>219</td>
<td>42.4</td>
<td>Monitoring Location M1 is representative</td>
</tr>
<tr>
<td>H</td>
<td>218</td>
<td>42.6</td>
<td>Permission Not Granted</td>
</tr>
<tr>
<td>R</td>
<td>219</td>
<td>42.5</td>
<td>Permission Not Granted</td>
</tr>
<tr>
<td>Q</td>
<td>231</td>
<td>42</td>
<td>Selected Receptor</td>
</tr>
<tr>
<td>M3</td>
<td>233</td>
<td>44.1*</td>
<td>Monitoring Location</td>
</tr>
<tr>
<td>V</td>
<td>232</td>
<td>42</td>
<td>Unsuitable Location</td>
</tr>
<tr>
<td>X</td>
<td>242</td>
<td>41.5</td>
<td>Monitoring Location M1 is Representative</td>
</tr>
<tr>
<td>I</td>
<td>246</td>
<td>41.5</td>
<td>Unsuitable Location</td>
</tr>
<tr>
<td>K</td>
<td>246</td>
<td>41.4</td>
<td>Monitoring Location M1 is Representative</td>
</tr>
<tr>
<td>S</td>
<td>242</td>
<td>41.7</td>
<td>Permission Not Granted</td>
</tr>
<tr>
<td>F</td>
<td>248</td>
<td>41.3</td>
<td>Monitoring Location M1 is Representative</td>
</tr>
<tr>
<td>P</td>
<td>263</td>
<td>40.8</td>
<td>Monitoring Location M1 is Representative</td>
</tr>
<tr>
<td>L</td>
<td>270</td>
<td>40.5</td>
<td>Monitoring Location M1 is Representative</td>
</tr>
<tr>
<td>O</td>
<td>285</td>
<td>40.1</td>
<td>Monitoring Location M1 is Representative</td>
</tr>
<tr>
<td>T</td>
<td>289</td>
<td>40.1</td>
<td>Selected Receptor</td>
</tr>
<tr>
<td>M2</td>
<td>292</td>
<td>39.2*</td>
<td>Monitoring Location</td>
</tr>
</tbody>
</table>

¹ Sound levels taken from ENIR [1].
* Sound level predicted by acoustic model prepared by HGC Engineering.
APPENDIX B:
MONITORING LOCATION PHOTOS
Photo of Meteorological Tower and Sound Level Meter at Location M1 (looking southwest)
Photo of Meteorological Tower and Sound Level Meter at Location M2 (looking northeast)
Photo of Meteorological Tower and Sound Level Meter at Location M3 (looking north)
APPENDIX C:
CALIBRATION CERTIFICATES
CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 16.US2.01516
Date of issue: February 9, 2016
Type: RNRG 40C Anemometer
Serial number: 179500262926
Manufacturer: Renewable NRG Systems Inc, 110 Riggs Road, Hinesburg, VT 05461, USA
Client: Renewable NRG Systems Inc, 110 Riggs Road, Hinesburg, VT 05461, USA

Anemometer received: February 2, 2016
Anemometer calibrated: 12:54 February 9, 2016
Calibrated by: mej
Certificate prepared by: Software Revision 7
Procedure: MEASNET, IEC 61400-12-1:2005(E) Annex F
Approved by: Calibration engineer, rds

Calibration equation obtained: \( v \text{ [m/s]} = 0.76201 \cdot f \text{ [Hz]} + 0.32169 \)

Standard uncertainty, slope: 0.00134
Covariance: -0.000130 (m/s)/Hz
Coefficient of correlation: \( \rho = 0.999990 \)
Absolute maximum deviation: 0.035 m/s at 8.793 m/s

Barometric pressure: 989.3 hPa
Relative humidity: 11.8%

<table>
<thead>
<tr>
<th>Succession</th>
<th>Velocity pressure, ( q ) [Pa]</th>
<th>Temperature in wind tunnel [°C]</th>
<th>Temperature in d.p. box [°C]</th>
<th>Wind velocity, ( v ) [m/s]</th>
<th>Frequency, ( f ) [Hz]</th>
<th>Deviation, ( d ) [m/s]</th>
<th>Uncertainty ( u_c ) (k=2) [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10.01</td>
<td>23.8</td>
<td>27.5</td>
<td>4.155</td>
<td>5.0431</td>
<td>-0.009</td>
<td>0.026</td>
</tr>
<tr>
<td>4</td>
<td>14.22</td>
<td>23.8</td>
<td>27.5</td>
<td>4.952</td>
<td>6.0999</td>
<td>-0.017</td>
<td>0.026</td>
</tr>
<tr>
<td>6</td>
<td>19.78</td>
<td>23.8</td>
<td>27.5</td>
<td>5.842</td>
<td>7.2345</td>
<td>0.007</td>
<td>0.028</td>
</tr>
<tr>
<td>8</td>
<td>26.95</td>
<td>23.8</td>
<td>27.4</td>
<td>6.819</td>
<td>8.5229</td>
<td>0.002</td>
<td>0.030</td>
</tr>
<tr>
<td>10</td>
<td>35.51</td>
<td>23.8</td>
<td>27.4</td>
<td>7.827</td>
<td>9.8308</td>
<td>0.014</td>
<td>0.033</td>
</tr>
<tr>
<td>12</td>
<td>44.81</td>
<td>23.8</td>
<td>27.4</td>
<td>8.793</td>
<td>11.0712</td>
<td>0.035</td>
<td>0.035</td>
</tr>
<tr>
<td>13-last</td>
<td>55.14</td>
<td>23.8</td>
<td>27.4</td>
<td>9.754</td>
<td>12.4104</td>
<td>-0.024</td>
<td>0.038</td>
</tr>
<tr>
<td>11</td>
<td>67.22</td>
<td>23.8</td>
<td>27.4</td>
<td>10.770</td>
<td>13.7072</td>
<td>0.004</td>
<td>0.042</td>
</tr>
<tr>
<td>9</td>
<td>81.51</td>
<td>23.8</td>
<td>27.5</td>
<td>11.860</td>
<td>15.1484</td>
<td>-0.005</td>
<td>0.045</td>
</tr>
<tr>
<td>7</td>
<td>95.72</td>
<td>23.8</td>
<td>27.5</td>
<td>12.853</td>
<td>16.4255</td>
<td>0.015</td>
<td>0.048</td>
</tr>
<tr>
<td>5</td>
<td>111.13</td>
<td>23.8</td>
<td>27.5</td>
<td>13.849</td>
<td>17.7853</td>
<td>-0.025</td>
<td>0.052</td>
</tr>
<tr>
<td>3</td>
<td>128.01</td>
<td>23.8</td>
<td>27.5</td>
<td>14.863</td>
<td>19.0919</td>
<td>-0.006</td>
<td>0.055</td>
</tr>
<tr>
<td>1-first</td>
<td>145.46</td>
<td>23.8</td>
<td>27.5</td>
<td>15.843</td>
<td>20.3556</td>
<td>0.010</td>
<td>0.058</td>
</tr>
</tbody>
</table>
CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 16.US2.01527  
Date of issue: February 9, 2016

Type: RNRG 40C Anemometer  
Serial number: 179500262946

Manufacturer: Renewable NRG Systems Inc, 110 Riggs Road, Hinesburg, VT 05461, USA

Client: Renewable NRG Systems Inc, 110 Riggs Road, Hinesburg, VT 05461, USA

Anemometer received: February 2, 2016  
Anemometer calibrated: 16:51 February 9, 2016

Calibrated by: ncm  
Procedure: MEASNET, IEC 61400-12-1:2005(E) Annex F

Certificate prepared by: Software Revision 7  
Approved by: Calibration engineer, rds

Calibration equation obtained: \( v \text{ [m/s]} = 0.76022 \cdot f \text{ [Hz]} + 0.35579 \)

Standard uncertainty, slope: 0.00146  
Standard uncertainty, offset: 0.04188

Covariance: -0.0000154 (m/s)/Hz  
Coefficient of correlation: \( \rho = 0.999988 \)

Absolute maximum deviation: 0.037 m/s at 14.838 m/s

Barometric pressure: 988.5 hPa  
Relative humidity: 11.8%

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9.96</td>
<td>24.1</td>
<td>27.5</td>
<td>4.149</td>
<td>5.0172</td>
<td>-0.021</td>
<td>0.026</td>
</tr>
<tr>
<td>4</td>
<td>14.15</td>
<td>24.2</td>
<td>27.5</td>
<td>4.946</td>
<td>6.0312</td>
<td>0.005</td>
<td>0.026</td>
</tr>
<tr>
<td>6</td>
<td>19.72</td>
<td>24.2</td>
<td>27.5</td>
<td>5.839</td>
<td>7.2156</td>
<td>-0.002</td>
<td>0.028</td>
</tr>
<tr>
<td>8</td>
<td>26.89</td>
<td>24.2</td>
<td>27.5</td>
<td>6.818</td>
<td>8.4869</td>
<td>0.010</td>
<td>0.030</td>
</tr>
<tr>
<td>10</td>
<td>35.29</td>
<td>24.1</td>
<td>27.4</td>
<td>7.810</td>
<td>9.8036</td>
<td>0.002</td>
<td>0.032</td>
</tr>
<tr>
<td>12</td>
<td>44.87</td>
<td>24.1</td>
<td>27.4</td>
<td>8.807</td>
<td>11.0769</td>
<td>0.030</td>
<td>0.035</td>
</tr>
<tr>
<td>13-last</td>
<td>55.06</td>
<td>24.1</td>
<td>27.5</td>
<td>9.756</td>
<td>12.4022</td>
<td>-0.028</td>
<td>0.038</td>
</tr>
<tr>
<td>11</td>
<td>67.07</td>
<td>24.1</td>
<td>27.4</td>
<td>10.768</td>
<td>13.6953</td>
<td>0.001</td>
<td>0.042</td>
</tr>
<tr>
<td>9</td>
<td>81.45</td>
<td>24.1</td>
<td>27.4</td>
<td>11.867</td>
<td>15.1267</td>
<td>0.012</td>
<td>0.045</td>
</tr>
<tr>
<td>7</td>
<td>95.42</td>
<td>24.2</td>
<td>27.5</td>
<td>12.845</td>
<td>16.4187</td>
<td>0.007</td>
<td>0.048</td>
</tr>
<tr>
<td>5</td>
<td>110.99</td>
<td>24.2</td>
<td>27.5</td>
<td>13.854</td>
<td>17.7341</td>
<td>0.016</td>
<td>0.052</td>
</tr>
<tr>
<td>3</td>
<td>127.30</td>
<td>24.1</td>
<td>27.5</td>
<td>14.838</td>
<td>19.0987</td>
<td>-0.037</td>
<td>0.055</td>
</tr>
<tr>
<td>1-first</td>
<td>144.98</td>
<td>24.1</td>
<td>27.5</td>
<td>15.834</td>
<td>20.3533</td>
<td>0.006</td>
<td>0.058</td>
</tr>
</tbody>
</table>

![Graph 1](image1.png)

![Graph 2](image2.png)
CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 16.US2.03537  
Date of issue: March 29, 2016

Type: RNRG 40C Anemometer  
Serial number: 179500265230

Manufacturer: Renewable NRG Systems Inc, 110 Riggs Road, Hinesburg, VT 05461, USA

Client: Renewable NRG Systems Inc, 110 Riggs Road, Hinesburg, VT 05461, USA

Anemometer received: March 22, 2016  
Anemometer calibrated: 19:30 March 29, 2016

Calibrated by: ncm  
Procedure: MEASNET, IEC 61400-12-1:2005(E) Annex F

Certificate prepared by: Software Revision 7  
Approved by: Calibration engineer, rds

Calibration equation obtained: \( v \ [m/s] = 0.76461 \cdot f \ [Hz] + 0.31796 \)

Standard uncertainty, slope: 0.00180  
Standard uncertainty, offset: 0.05789

Covariance: -0.0000236 (m/s)/Hz  
Coefficient of correlation: \( \rho = 0.999982 \)

Absolute maximum deviation: 0.042 m/s at 13.873 m/s

Barometric pressure: 1005.9 hPa  
Relative humidity: 18.5%

<table>
<thead>
<tr>
<th>Succession</th>
<th>Velocity pressure, q. [Pa]</th>
<th>Temperature in wind tunnel [°C]</th>
<th>Temperature in d.p. box [°C]</th>
<th>Wind velocity, v. [m/s]</th>
<th>Frequency, f. [Hz]</th>
<th>Deviation, d. [m/s]</th>
<th>Uncertainty ( u_c ) (k=2) [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10.18</td>
<td>24.0</td>
<td>31.4</td>
<td>4.159</td>
<td>5.0755</td>
<td>-0.040</td>
<td>0.024</td>
</tr>
<tr>
<td>4</td>
<td>14.54</td>
<td>24.0</td>
<td>31.4</td>
<td>4.970</td>
<td>6.0893</td>
<td>-0.004</td>
<td>0.025</td>
</tr>
<tr>
<td>6</td>
<td>20.17</td>
<td>24.0</td>
<td>31.4</td>
<td>5.854</td>
<td>7.2578</td>
<td>-0.014</td>
<td>0.027</td>
</tr>
<tr>
<td>8</td>
<td>27.51</td>
<td>24.0</td>
<td>31.4</td>
<td>6.837</td>
<td>8.5098</td>
<td>0.013</td>
<td>0.029</td>
</tr>
<tr>
<td>10</td>
<td>36.04</td>
<td>24.0</td>
<td>31.5</td>
<td>7.825</td>
<td>9.7884</td>
<td>0.023</td>
<td>0.032</td>
</tr>
<tr>
<td>12</td>
<td>45.70</td>
<td>23.9</td>
<td>31.5</td>
<td>8.811</td>
<td>11.0937</td>
<td>0.011</td>
<td>0.035</td>
</tr>
<tr>
<td>13-last</td>
<td>56.35</td>
<td>23.9</td>
<td>31.4</td>
<td>9.784</td>
<td>12.3511</td>
<td>0.022</td>
<td>0.038</td>
</tr>
<tr>
<td>11</td>
<td>68.48</td>
<td>23.9</td>
<td>31.4</td>
<td>10.786</td>
<td>13.6543</td>
<td>0.028</td>
<td>0.041</td>
</tr>
<tr>
<td>9</td>
<td>83.29</td>
<td>24.0</td>
<td>31.5</td>
<td>11.897</td>
<td>15.1322</td>
<td>0.008</td>
<td>0.045</td>
</tr>
<tr>
<td>7</td>
<td>97.46</td>
<td>24.0</td>
<td>31.4</td>
<td>12.870</td>
<td>16.4059</td>
<td>0.008</td>
<td>0.048</td>
</tr>
<tr>
<td>5</td>
<td>113.23</td>
<td>24.0</td>
<td>31.4</td>
<td>13.873</td>
<td>17.7828</td>
<td>-0.042</td>
<td>0.052</td>
</tr>
<tr>
<td>3</td>
<td>130.05</td>
<td>24.0</td>
<td>31.4</td>
<td>14.868</td>
<td>19.0183</td>
<td>0.008</td>
<td>0.055</td>
</tr>
<tr>
<td>1-first</td>
<td>148.02</td>
<td>23.9</td>
<td>31.4</td>
<td>15.861</td>
<td>20.3573</td>
<td>-0.022</td>
<td>0.058</td>
</tr>
</tbody>
</table>

[Graphs showing the relationship between velocity, frequency, and deviation]
CERTIFICATE of CALIBRATION

Make : Svantek  
Reference # : 146973
Model : SVAN977  
Customer : HGC Engineering
Deser. : Sound Level Meter Type 1  
Mississauga, ON
Serial # : 36426  
P. Order : Sean Richardson
Asset # : SV977-2
Cal. status : Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer. Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-17025 standard, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated : Feb 22, 2017  
By : T. Beilin
Cal. Due : Feb 22, 2018
Temperature : 23 °C ± 2 °C  
Relative Humidity : 30% to 70%
Standards used : J-216 J-303 J-512

Navair Technologies
REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST
6375 Dixie Rd. Mississauga, ON, L5T 2E7
Phone: 905 565 1584  
Fax: 905 565 8325
http://www.navair.com  
e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies
Any reproduction other than in full requires written approval!
CERTIFICATE of CALIBRATION

Make : Svantek  
Model : SVAN977  
Descr. : Sound Level Meter Type 1  
Serial # : 36428  
Asset # : SV977-3  
Reference # : 146971  
Customer : HGC Engineering  
Mississauga, ON  
P. Order : Sean Richardson  
Cal. status : Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer. Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.
Our calibration system complies with the requirements of ISO-17025 standard, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated : Feb 22, 2017  
By : T. Beilin  
Cal. Due : Feb 22, 2018  
Temperature : 23 °C ± 2 °C  
Relative Humidity : 30% to 70%  
Standards used : J-216 J-303 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST
6375 Dixie Rd. Mississauga, ON, L5T 2E7  
http://www.navair.com  
Fax: 905 565 8325  
e-Mail: service@navair.com

The copyright of this document is the property of Navair Technologies. Any reproduction other than in full requires written approval!
CERTIFICATE of CALIBRATION

Make : Svantek
Model : SVAN977
Descr. : Sound Level Meter Type 1
Serial # : 36439
Asset # : SV977-4

Reference # : 146966
Customer : HGC Engineering
            Mississauga, ON
P. Order : Sean Richardson
Cal. status : Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated
on date noted and was released from this laboratory performing in accordance with the
specifications set forth by the manufacturer.
Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for
this calibration.
Our calibration system complies with the requirements of ISO-17025 standard, working
standards used for calibration are certified by or traceable to the National Research
Council of Canada or the National Institute of Standards and Technology.

Calibrated : Feb 22, 2017
Cal. Due : Feb 22, 2018

By : T. Beilin

Temperature : 23 °C ± 2 °C  Relative Humidity : 30% to 70%
Standards used : J-216 J-303 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST
6375 Dixie Rd. Mississauga, ON, L5T 2E7
Phone : 905 565 1584       Fax: 905 565 8325
http: // www.navair.com            e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies
Any reproduction other than in full requires written approval!
APPENDIX D:
STATEMENT OF OPERATION
December 15, 2017

To whom it may concern,

Re: Statement of Operation
Union Building Corporation of Canada
Port Elgin, Ontario

This letter is to confirm that the wind turbine generator at the Unifor Family Education Center was functioning in its standard operational mode during the acoustic audit, conducted between September 21 and November 7, 2017. Additionally, this letter confirms that the turbine was shut down for ambient (OFF) condition measurements.

Yours Truly,

Graeme Brown
Director, Operations and Facilities